2016年《全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱》今天正式亮相。為了幫助2016屆的考生更好的進(jìn)行線性代數(shù)的備考,針對(duì)線性代數(shù)的考試大綱特地給
作者
佚名
2016年《全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱》今天正式亮相。為了幫助2016屆的考生更好的進(jìn)行線性代數(shù)的備考,針對(duì)線性代數(shù)的考試大綱特地給出以下備考指南,希望能夠幫助同學(xué)們考到自己理想的分?jǐn)?shù),進(jìn)入自己理想中的大學(xué)。
對(duì)照2015年考試大綱,2016年數(shù)三大綱中線性代數(shù)部分的內(nèi)容沒(méi)有變化。
2015年與2016年考研線性代數(shù)大綱變化對(duì)比——數(shù)三 |
||||
|
章節(jié) |
2015年數(shù)學(xué)考試大綱考試內(nèi)容和考試要求 |
2016年數(shù)學(xué)考試大綱考試內(nèi)容和考試要求 |
變化對(duì)比 |
線 性 代 數(shù) |
一、行列式 |
考試內(nèi)容 行列式的概念和基本性質(zhì) 行列式按行(列)展開(kāi)定理考試要求 1.了解行列式的概念,掌握行列式的性質(zhì). 2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式. |
考試內(nèi)容 行列式的概念和基本性質(zhì) 行列式按行(列)展開(kāi)定理考試要求 1.了解行列式的概念,掌握行列式的性質(zhì). 2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式. |
對(duì)比:無(wú)變化 |
|
二、矩陣 |
考試內(nèi)容 矩陣的概念 矩陣的線性運(yùn)算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價(jià) 分塊矩陣及其運(yùn)算考試要求 1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣的定義及性質(zhì),了解對(duì)稱矩陣、反對(duì)稱矩陣及正交矩陣等的定義和性質(zhì). 2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì). 3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣. 4.了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法. 5.了解分塊矩陣的概念,掌握分塊矩陣的運(yùn)算法則. |
考試內(nèi)容 矩陣的概念 矩陣的線性運(yùn)算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價(jià) 分塊矩陣及其運(yùn)算考試要求 1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣的定義及性質(zhì),了解對(duì)稱矩陣、反對(duì)稱矩陣及正交矩陣等的定義和性質(zhì). 2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì). 3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣. 4.了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法. 5.了解分塊矩陣的概念,掌握分塊矩陣的運(yùn)算法則. |
對(duì)比:無(wú)變化 |
|
三、向量 |
考試內(nèi)容 向量的概念 向量的線性組合與線性表示 向量組的線性相關(guān)與線性無(wú)關(guān) 向量組的極大線性無(wú)關(guān)組 等價(jià)向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量的內(nèi)積 線性無(wú)關(guān)向量組的正交規(guī)范化方法考試要求 1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則. 2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無(wú)關(guān)等概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法. 3.理解向量組的極大線性無(wú)關(guān)組的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩. 4.理解向量組等價(jià)的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系. 5.了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法. |
考試內(nèi)容 向量的概念 向量的線性組合與線性表示 向量組的線性相關(guān)與線性無(wú)關(guān) 向量組的極大線性無(wú)關(guān)組 等價(jià)向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量的內(nèi)積 線性無(wú)關(guān)向量組的正交規(guī)范化方法考試要求 1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則. 2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無(wú)關(guān)等概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法. 3.理解向量組的極大線性無(wú)關(guān)組的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩. 4.理解向量組等價(jià)的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系. 5.了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法. |
對(duì)比:無(wú)變化 |
|
四、線性方程組 |
考試內(nèi)容 線性方程組的克拉默(Cramer)法則 線性方程組有解和無(wú)解的判定 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系 非齊次線性方程組的通解 考試要求 1.會(huì)用克拉默法則解線性方程組. 2.掌握非齊次線性方程組有解和無(wú)解的判定方法. 3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法. 4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念. 5.掌握用初等行變換求解線性方程組的方法. |
考試內(nèi)容 線性方程組的克拉默(Cramer)法則 線性方程組有解和無(wú)解的判定 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系 非齊次線性方程組的通解 考試要求 1.會(huì)用克拉默法則解線性方程組. 2.掌握非齊次線性方程組有解和無(wú)解的判定方法. 3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法. 4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念. 5.掌握用初等行變換求解線性方程組的方法. |
對(duì)比:無(wú)變化 |
|
五、矩陣的特征值和特征向量 |
考試內(nèi)容 矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣 實(shí)對(duì)稱矩陣的特征值和特征向量及相似對(duì)角矩陣 考試要求 1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法. 2.理解矩陣相似的概念,掌握相似矩陣的性質(zhì),了解矩陣可相似對(duì)角化的充分必要條件,掌握將矩陣化為相似對(duì)角矩陣的方法. 3.掌握實(shí)對(duì)稱矩陣的特征值和特征向量的性質(zhì). |
考試內(nèi)容 矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣 實(shí)對(duì)稱矩陣的特征值和特征向量及相似對(duì)角矩陣 考試要求 1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法. 2.理解矩陣相似的概念,掌握相似矩陣的性質(zhì),了解矩陣可相似對(duì)角化的充分必要條件,掌握將矩陣化為相似對(duì)角矩陣的方法. 3.掌握實(shí)對(duì)稱矩陣的特征值和特征向量的性質(zhì). |
對(duì)比:無(wú)變化 |
|
六、二次型 |
考試內(nèi)容 二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性 考試要求 1.了解二次型的概念,會(huì)用矩陣形式表示二次型,了解合同變換與合同矩陣的概念. 2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會(huì)用正交變換和配方法化二次型為標(biāo)準(zhǔn)形. 3.理解正定二次型、正定矩陣的概念,并掌握其判別法. |
考試內(nèi)容 二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性 考試要求 1.了解二次型的概念,會(huì)用矩陣形式表示二次型,了解合同變換與合同矩陣的概念. 2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會(huì)用正交變換和配方法化二次型為標(biāo)準(zhǔn)形. 3.理解正定二次型、正定矩陣的概念,并掌握其判別法. |
對(duì)比:無(wú)變化 |
?。▽?shí)習(xí)編輯:豆雪蕾)
關(guān)于"最后階段,真題的正確打開(kāi)方式_備考經(jīng)驗(yàn)_考研幫"有15名研友在考研幫APP發(fā)表了觀點(diǎn)
掃我下載考研幫
最新資料下載
2021考研熱門(mén)話題進(jìn)入論壇
考研幫地方站更多
你可能會(huì)關(guān)心:
來(lái)考研幫提升效率